Как работает цифровая камера

Иконограф делал картинки вовсе не за счет того, что пропускал свет на специальным образом обработанную бумагу. Все было гораздо проще - внутри у него сидел маленький демон, который хорошо чувствовал цвет и умел быстро работать кистью.

Терри Пратчетт. "Безумная звезда"

В этом номере я собираюсь начать "долгоиграющую" тему о том, как устроена и как работает цифровая камера, что значат всякие умные слова вроде "брэкетинг" и "экспокоррекция" и, главное, как всем этим целенаправленно пользоваться.

Вообще, цифровая камера - это аппарат, позволяющий получать изображения объектов в цифровой форме. По большому счету, разница между обычным и цифровым фотоаппаратом - только в приемнике изображения. В первом случае это фотоэмульсия, требующая затем химической обработки. Во втором - специальный электронный датчик, преобразующий падающий свет в электрический сигнал. Датчик этот называется сенсором или матрицей и действительно представляет из себя прямоугольную матрицу светочувствительных ячеек, помещенных на одном полупроводниковом кристалле.

При попадании света на элемент матрицы он вырабатывает электрический сигнал, пропорциональный количеству попавшего света. Затем сигналы (пока что это аналоговые сигналы) с элементов матрицы считываются и преобразуются в цифровую форму аналогово-цифровым (АЦП) преобразователем. Дальше цифровые данные обрабатываются процессором камеры (да, в ней тоже есть процессор) и сохраняются уже в виде, собственно, картинки.

Итак, сердцем любой цифровой камеры является сенсор. Сейчас существуют две основные технологии производства сенсоров - ПЗС (CCD, charge coupled device - устройство с зарядовой связью) и КМОП. В ПЗС-матрице во время экспозиции (то есть в момент, собственно, фотографирования) в светочувствительных элементах накапливается заряд, пропорциональный интенсивности падающего света. При считывании данных эти заряды сдвигаются из ячейки в ячейку, пока не будет считана вся матрица (фактически, чтение происходит построчно). Данный процесс в популярной литературе любят сравнивать с передачей ведер с водой по цепочке. Производятся ПЗС-матрицы по МОП-технологии и для получения качественного изображения требуют высокой однородности параметров по всей площади чипа. Соответственно, они достаточно дороги.

 

Альтернативой ПЗС являются CMOS (то бишь, по-русски, КМОП) матрицы. По сути своей, КМОП-сенсор достаточно похож на микросхему оперативной памяти - DRAM. Тоже прямоугольная матрица, тоже конденсаторы, тоже считывание с произвольным доступом. В качестве светочувствительных элементов в КМОП-матрицах используются фотодиоды. В общем, КМОП-матрицы намного лучше подходят для производства по хорошо разработанным нынче техпроцессам. К тому же, помимо всего прочего (большая плотность упаковки элементов, меньшее энергопотребление, более низкая цена), это позволяет интегрировать сопутствующую электронику на один кристалл с матрицей. Правда, до недавнего времени CMOS не выдерживал конкуренции с CCD в смысле качества, так что на основе CMOS-сенсоров делались, в основном, дешевые устройства вроде веб-камер. Однако в последнее время сразу несколько крупных компаний (в частности, такой монстр индустрии, как Kodak) разрабатывали технологии производства CMOS-матриц высокого разрешения и высокого качества. Первая "серьезная" (трехмегапиксельная цифровая зеркалка) камера на КМОП - Canon EOS-D30 - появилась почти два года назад. А объявленные на последней Photokina полноформатные камеры Canon EOS 1Ds и Kodak Pro DCS-14n окончательно продемонстрировали потенциал КМОП-сенсоров. Впрочем, большинство камер пока все-таки выпускаются на основе ПЗС-матриц.

Желающие более подробно познакомиться с обеими технологиями могут начать вот с этого адреса www.eecg.toronto.edu/~kphang/ece1352f/papers/ng_CCD.pdf, а мы пойдем дальше.

Следующий момент - элементы матрицы (любого из вышеописанных типов) воспринимают только интенсивность падающего света (то есть, дают черно-белое изображение). Откуда берется цвет? Для получения цветного изображения между объективом и матрицей располагается специальный светофильтр, состоящий из ячеек основных цветов (GRGB, либо CMYG), находящихся над соответствующими пикселами. Причем, для зеленого цвета используются два пиксела (в RGB, или один в CMY), поскольку глаз наиболее чувствителен именно к этому цвету. Окончательный цвет пиксела на картинке в такой системе высчитывается с учетом интенсивностей соседних элементов разных цветов, так что в результате каждому одноцветному пикселу матрицы соответствует цветной пиксел на картинке. Таким образом, окончательная картинка всегда в той или иной степени интерполирована (то есть рассчитана, а не получена непосредственным фотографированием объекта, что неминуемо сказывается на качестве мелких деталей снимка). Что касается конкретных фильтров, то в большинстве случаев используется прямоугольная матрица GRGB (фильтр Байера).

Существует еще такая штука, как SuperCCD, изобретенная Fuji Photo Film и использующаяся в камерах Fuji с 2000 года. Суть этой технологии в том, что пикселы (и элементы светофильтра - тоже GRGB) расположены в виде своеобразной диагональной матрицы.

Причем камера интерполирует не только цвета самих пикселов, но и цвета точек, расположенных между ними. Таким образом, на фотоаппаратах Fuji всегда указывается разрешение, в два раза превосходящее даже количество физических (одноцветных) пикселов, что не есть правда. Впрочем, технология Fuji все же получилась достаточно удачной - большинство людей, сравнивавших качество снимков с SuperCCD и обычных камер, сходится в том, что качество картинки с SuperCCD соответствует обычной матрице с разрешением, примерно в 1.5 раза большим, чем физическое разрешение SuperCCD. Но не в 2 раза, как это заявлено Fuji.

Заканчивая разговор о фильтрах, самое время упомянуть о третьей альтернативной технологии производства сенсоров, а именно - Foveon X3. Она разрабатывалась фирмой Foveon и была объявлена весной этого года. Суть технологии - физическое считывание всех трех цветов для каждого пиксела (по идее, разрешение такого сенсора будет эквивалентно разрешению обычного сенсора с в три раза большим количеством пикселов). При этом для деления падающего света на цветовые компоненты используется свойство кремния (из которого изготовлен сенсор) пропускать свет с разной длиной волны (то есть, цветом) на разную глубину. Фактически, каждый пиксел Foveon представляет собой трехслойную структуру, причем глубина залегания активных элементов соответствует максимуму пропускания кремнием света для основных цветов (RGB). По-моему, весьма перспективная идея. По крайней мере, в теории. Потому что на практике первая объявленная камера на основе Foveon X3 пока так и остается единственной. Да и ее поставки пока толком так и не начались. Более подробно об этой технологии мы писали в шестом номере газеты за этот год.

Однако вернемся к сенсорам. Основной характеристикой любой матрицы, с точки зрения конечного пользователя, является ее разрешение - то есть количество светочувствительных элементов. Большинство камер сейчас делается на основе матриц в 2-4 мегапиксела (миллион пикселов). Естественно, чем больше разрешение матрицы, тем более детализированный снимок можно на ней получить. Конечно, чем больше матрица, тем она дороже. Но за качество всегда приходится платить. Разрешение матрицы и размер получаемого снимка в пикселах связаны напрямую, например, на мегапиксельной камере мы получим картинку размером 1024х960 = 983040. Надо сказать, что увеличение разрешения матриц - одна из главных задач, с которой сейчас борются производители цифровых камер. Скажем, года три назад большинство камер среднего ценового диапазона снабжалось мегапиксельными матрицами. Два года назад это число увеличилось до двух мегапикселов. Год назад оно уже стало равно трем-четырем мегапикселам. Сейчас же большинство последних моделей камер комплектуется сенсорами с разрешением 4-5 мегапикселов. И уже существует несколько полупрофессиональных моделей, снабженных матрицами больше 10 мегапикселов. Видимо, где-то на этом уровне гонка и остановится, поскольку снимок с 10-мегапиксельной матрицы примерно соответствует по детализации снимку на стандартную 35-миллиметровую пленку.

Кстати, не надо путать разрешение матрицы в том виде, как мы определили его выше, и разрешающую способность. Последняя определяется как способность камеры разделить изображение двух объектов и обычно измеряется по снимку штриховой миры с известным расстоянием между штрихами. Разрешающая способность описывает свойства всей оптической системы камеры - то есть матрицы и объектива. В принципе, разрешение и разрешающая способность связаны между собой, но связь эта определяется не только параметрами матрицы, но и качеством использованной в камере оптики.

Следующая характеристика цифровой камеры, напрямую связанная с матрицей, - это чувствительность. Или, точнее, светочувствительность. Этот параметр, как и следует из названия, описывает чувствительность матрицы к падающему свету и, в принципе, полностью аналогичен светочувствительности обычных фотоматериалов. Например, вы можете купить в магазине пленку чувствительностью 100, 200 или 400 единиц. Точно так же можно выставить чувствительность матрицы, но полюс цифрового фотоаппарата в том, что чувствительность выставляется индивидуально для каждого кадра. Скажем, при ярком солнечном свете можно снимать с чувствительностью 100 или 50, а для ночной съемки можно переключиться на 400 (а в некоторых фотоаппаратах и на 1400). Большинство цифровых камер позволяет выставлять стандартные значения чувствительности - 50, 100, 200 и 400. Кроме того, система автоэкспозиции может менять чувствительность плавно. Поскольку физически регулировка чувствительности осуществляется изменением коэффициента усиления сигнала с матрицы, то в камере это реализовать достаточно просто.

Измеряется чувствительность в единицах ISO (по крайней мере, для цифровых камер они уже стали стандартом). Как они переводятся в единицы DIN и ГОСТ, вы можете посмотреть в таблице.

ГОСТ 8 11 32 65 90 180 250
ISO 9 12 35 70 100 200 300
DIN 10 11-20 16 19-20 21 24 25-26

Впрочем, у регулируемой чувствительности есть свои недостатки. Поскольку физически при этом свойства матрицы не меняются, а просто усиливается существующий сигнал, то на изображении начинают все больше и больше проявляться шумы, свойственные любому электронному устройству. Это очень сильно снижает рабочий динамический диапазон камеры, так что при высокой чувствительности вы хорошей картинки не получите. С аналогичной проблемой, кстати, можно столкнуться и при больших экспозициях - любая матрица шумит, а со временем шум накапливается. Сейчас во многих камерах реализуются специальные алгоритмы шумоподавления при больших экспозициях, однако они склонны сглаживать изображение и размывать мелкие детали. В общем, против законов физики не попрешь, но все-таки возможность регулировать чувствительность - большой плюс цифровых камер.

Константин АФАНАСЬЕВ

Версия для печатиВерсия для печати

Номер: 

41 за 2002 год

Рубрика: 

Цифровая фотография
Заметили ошибку? Выделите ее мышкой и нажмите Ctrl+Enter!