Внутреннее устройство литий-ионного аккумулятора

В прошлой статье цикла читатели "КВ" ознакомились с правилами эксплуатации литий-ионных аккумуляторных батарей. Теперь же пришло время погрузиться в глубины химии литий-ионных аккумуляторов.

Попытки создания вторичных химических источников тока восходят к двадцатым годам прошлого века. Исследователей привлекала высокая теоретическая ёмкость таких аккумуляторов.

Препятствием на пути к литиевому аккумулятору стала высокая реакционная способность лития. Даже в 1980-х промышленные литиевые аккумуляторные батареи представляли весьма взрыво- и огнеопасные изделия со средней циклируемостью в 50 циклов. Основной причиной выхода из строя литиевых аккумуляторов было прорастание дендритов лития, образующихся при циклировании, до электрода с противоположным знаком, что приводило к короткому замыканию внутри элемента и быстрому разогреву. При этом литий бурно реагировал с органическим электролитом, что достаточно часто приводило к взрыву.

Прогресс в области электроники усилил потребность в ёмких и лёгких перезаряжаемых источниках тока, а также создал предпосылки к появлению систем управления аккумуляторными батареями (BMS). В 1992 году корпорация Sony представила миру новое видение аккумулятора на основе лития.

В новых аккумуляторах металлический литий был заменён более безопасной ионной формой. Для обеспечения безопасности аккумуляторные батареи оснащались системой BMS (контроль режимов заряда и разряда позволил резко снизить риск появления в аккумуляторе металлического лития - основного виновника взрывоопасности литий-ионного аккумулятора).

 

Первый литий-ионный аккумулятор имел положительный электрод на основе кобальтата лития, положительный электрод на основе углерода (Sony применила кокс - материал, получаемый при термической обработке каменного угля) и электролит на базе гексафторфосфида лития, растворённого в органическом растворителе.

Поскольку Sony не спешила делиться патентом на свои новые аккумуляторы, другие производители нашли выход из положения в применении новых химических составов электродов и изменении свойств электролита.

Первые модификации затронули структуру отрицательного электрода - кокс заменяли на графит различной степени зернистости. Однако химики Sony настолько удачно применили дешёвый кокс с великолепными характеристиками, что другим производителям аналогичных аккумуляторов с графитовыми электродами пришлось пройти долгий путь до подбора правильной структуры графитового порошка, обеспечивающего такие же параметры при эксплуатации.

Поскольку литий-кобальтовый положительный электрод уже был запатентован Sony, то взоры исследователей обратились к альтернативным вариантам - электроды создавались на базе литий-марганцевых, литий-железо-фосфатных и многих других химических составляющих.

Многие из новых электродов показали себя с лучшей стороны и оказались востребованными рынком. В настоящее время наибольшее распространение получили литий-марганцевые, литий-кобальтовые и литий-железофосфатные литий-ионные аккумуляторы.

С помощью замечательной бесплатной программы 3D-моделирования Blender мне удалось схематично представить кристаллические решётки различных вариантов положительных электродов литий-ионных аккумуляторов.

Как вы можете видеть, для литий-кобальтовой кристаллической решётки характерно расположение ионов лития послойно. Такое расположение предсказывает достаточно хорошие разрядные характеристики аккумулятора, однако стабильность подобной кристаллической решётки относительно низка, поэтому литий-кобальтовые аккумуляторы плохо переносят разряд большими токами.

Для литий-марганцевых аккумуляторов характерно "трёхмерное" расположение ионов лития в кристаллической решётке положительного электрода. Такое расположение ведёт к хорошей переносимости высоких токов разряда и достаточно хорошей стабильности электрода в процессе эксплуатации.

Литий-железофосфатные отрицательные электроды весьма стабильны - что очень хорошо видно по крепкой кристаллической решётке с "каналами" для ионов лития. Однако этот факт резко ограничивает подвижность ионов лития и такими электродами стали пользоваться относительно недавно - после того, как производителям удалось создать электроды, собираемые из частиц литий-железофосфата размером в сотни нанометров (размер частиц в сто раз меньше, чем у "3D" литий-марганцевых аккумуляторов, следовательно, общая площадь на четыре порядка выше - и этот факт кардинально улучшает характеристики литий-железофосфата).

Приобретя модную нынче приставку "нано-" к своему названию, литий-железофосфатные аккумуляторы оказались одними из самых перспективных для дальнейшего использования в мощных устройствах (их можно использовать даже как стартерные аккумуляторы для автомобилей).

Кроме материала для отрицательного электрода, производители научились применять в качестве электролита полимерный материал с включениями гелеобразного литий-проводящего наполнителя. Такие литий-ионные аккумуляторы с полимерным электролитом сейчас стали стандартом для миниатюрных устройств.

Разработки в области полимерных электролитов позволили создать твёрдый электролит, проводящий ионы лития по механизму обмена ионов внутри матрицы электролита. Такой электролит позволил вернуть к жизни захиревшие аккумуляторы с электродами из металлического лития.

Твёрдый электролит создаёт в месте контакта с металлическим литием поверхность, препятствующую образованию дендритов лития при циклировании, что позволяет забыть об основной проблеме, приводящей к возгоранию и взрыву литиевых аккумуляторов.

Как всегда, в бочке мёда оказалась хорошая примесь дёгтя - литий-полимерные аккумуляторы могут работать только при температурах свыше 40 градусов Цельсия (так как ионная проводимость твёрдого электролита при комнатной температуре ничтожна). Необходимость высокой рабочей температуры диктует необходимость системы подогрева аккумулятора - поэтому можно не верить производителям, гордо маркирующим свои аккумуляторы для мобильных телефонов как "Li-Pol" (на самом деле это литий-ионный аккумулятор с полимерным электролитом).

Как бы мне не хотелось закончить статью, однако осталась ещё тема отрицательного электрода в литий-ионном аккумуляторе. В настоящее время появляются разработки на базе титаната лития (с модной приставкой "нано-"). Сочетание этих электродов с положительными электродами на основе литий-железофосфата сулит резкое увеличение срока жизни и уровня безопасности литий-ионных аккумуляторов.

Конечно же, в небольшой статье невозможно охватить такую ёмкую тему, как химия основанных на литии вторичных химических источников тока, однако беглый обзор существующих решений поможет читателю не утонуть в огромной массе рекламных заявлений производителей. Каждые полгода появляются новые разработки на ниве литий-ионных аккумуляторов, и только время и опыт могут дать ответы на вопросы соответствия эксплуатационных характеристик, заявленных производителями, реальным показателям.

Дмитрий СПИЦЫН,
sdisle.com/battery

Версия для печатиВерсия для печати

Номер: 

33 за 2008 год

Рубрика: 

Hardware
Заметили ошибку? Выделите ее мышкой и нажмите Ctrl+Enter!